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ABSTRACT 
The dynamic response under moving concentrated masses of uniform Rayleigh beam resting on Pasternak foundation, with simply 
supported boundary condition, is investigated in this work. In order to solve the governing fourth order partial differential 
equation, a technique based on the generalized integral transform (GIT) is used to reduce the governing equation to a sequence of 
second order ordinary differential equations. A modification of Struble’s technique is employed for the solution of the reduced 
equation. Numerical results in plotted curves are presented. It is shown from the results that as the Rotatory inertia  increases, 
the response amplitudes of the uniform Rayleigh beam decrease for both moving force and moving mass problems. Furthermore, 
the results show that the response amplitudes of the uniform Rayleigh beam decrease with an increase in the values of the shear 
modulus 0G  for fixed values of foundation modulus 0K  and Rotatory inertia . Similarly, as 0K  increases, the response 

amplitudes decrease but the effect of 0G  is more noticeable than that of .0K Finally, for the same natural frequency, the critical 
speed for the moving mass problem is smaller than that of the moving force problem. Hence, resonance is reached earlier in the 
moving mass problem.   
 
Keywords: moving mass, moving force Rayleigh beam 

 
1.  INTRODUCTION 
Moving loads cause solid bodies to vibrate intensively, particularly at high velocities. Thus, the study of the response of bodies 
subjected to moving loads has been the concern of several researchers. Among the earliest work in this area of study was the work 
of Willis [13] who considered the problem of elastic beam under the action of moving load. In their study, the mass of the beam was 
considered much smaller than the mass of the moving load. Much later the problem of simply supported finite beams lying on an 
elastic foundation and traversed by moving loads was investigated by Timoshenko [12]. In his analysis, he assumed that the loads 
were moving with constant velocities along the beam. Furthermore, Kenny [5] took up the problem of investigating the dynamic 
response of infinite elastic beams on elastic foundation when the beams under the influence of a dynamic load move with constant 
speed. He included the effects of viscous damping in the governing differential equation of motion. More recently, Oni and 
Awodola [9] considered the problem of a harmonic time variable concentrated force moving at uniform velocity, over a finite deep 
beam.     
In all the aforementioned investigations, only the force effects of the moving loads are taken into consideration. The more 
complicated case for which the load mass and the beam mass are of comparable magnitude remained unaddressed for several years 
.In this case the inertia effect of the moving load is taken into consideration. This introduces singularity in the governing differential 
equation which makes the dynamical problem more cumbersome.   
Attempt to solve this type of dynamical problem was first made by Gbadeyann and Oni [3] whose iterative method becomes 
divergent in some cases. This was closely followed by Fryba [2] and Odman [8]. In their works, solutions were presented in 
approximate form involving rather laborious perturbation techniques. Milomir et al [6] developed a method based on Fourier 
analysis to solve the problem of response of beams to an arbitrary number of concentrated moving masses. The method led to an 
approximate rapidly converging solution readily of useful importance to design analysis and calculation. This method is not 
connected with any previously developed technique on this subject Remarkable among the various studies after this is the work of 
Stanisic and Hardin [11] in 1968.They studied the two-dimensional problem of flexural vibration of plate under the actions of 
moving masses. For simplicity only the term that measures the effect of local acceleration in the direction of deflection was 
considered. A method based on integral transformation technique was used. However, this method is only suitable for the simply 
supported boundary conditions. Shortly after this, the corresponding one dimensional problem of the response of beams to an 
arbitrary number of concentrated moving masses was solved by the same group Stanisic and Hardin [11]. Only the term that 
measures the effect of local acceleration in the direction of the deflection was considered and the method of solution was only 
suitable for simple end conditions. Gbadeyan and Oni [4] developed a theory for obtaining an appropriate analytical solution to 
the problem of a finite Rayleigh beam (a thick beam) under the action of moving masses. The theory advances the development of 
an analytical versatile technique which is based on the modified generalized finite integral transform (GFIT) and the modification 
of the asymptotic struble’s technique. A unique feature of this elegant technique is that it is capable of solving beam problems 
involving any of the classical conditions. Furthermore, this technique may be modified to solve one- dimensional moving mass 
problem having non-classical boundary conditions. 
In all the aforementioned works, structures are either not resting on any foundation model or resting in the well known Winkler 
foundation model. The foundation model based on Winkler’s approximation model is very common in literature particularly when 
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considering the response of beam structure under the action of moving loads. It is asserted in the Winkler [14], that the pressure 
P(x,t) exerted by the foundation is proportional, at every point, to the deflection V(x , t) at the same point ; 
 
i.e.         
( ) )1.1(),(, 0 txVKtxP =          

where 0K is the foundation modulus. 
The Winkler model has been conveyed variously by Gbadeyan, J. A. and Oni, S. T. [3] and Aiyesimi, Y. M. [1]  because it claims 
discontinuous in the deflections of the surface of the foundation beyond the load region (i.e. at the ends of a finite beam), which is 
in contradiction to observation in practice.  
Emphatically speaking, the characteristic feature of the well known Winkler foundation model is the discontinuous behaviors’ of the 
surface displacements [3] continue beyond the load region .Thus, a more realistic foundation model, which admits the continuity of 
the surface displacement beyond the region of the load was developed by Pasternak [10] .For this model, a second foundation 
constant, the shear modulus  enters into the formulation, and equation (1.1) turns to  
 

[ ] )2.1(),(),(),( 0
2

0 txVKtxGtxPG −∇−=  

where  0K  and 0G  are foundation stiffness and shear modulus respectively. This foundation model is termed Pasternak 
foundation. 
 
2. GOVERNING EQUATION   

Consider the flexural motion of a uniform Rayleigh beam resting on Pasternak foundation. The governing equation of motion with 
damping neglected of the uniform Rayleigh beam traversed by a moving concentrated loads of mass M at constant speed c, is the 
fourth order partial differential equation given by 
 
where x  is the spatial coordinate, t  is the time, ),( txV  is the transverse displacement, E is the young modulus, I is the moment 

of inertia, EI is the flexural rigidity of the structure,µ is the mass per unit length of the beam, OR is the rotatory inertia correcting 

factor, ),( txP  is the transverse concentrated load and ),( txPG  is the foundation reaction. 
The boundary conditions of the structure under consideration is arbitrary and the initial condition without any loss of generality is 
taken as  
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    If the inertia effect of the moving load is considered, the load ),( txP  takes the form in Gbadeyan and Oni [4] 
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   where the continuous moving force ),( txPf  acting on the beam model is given by  
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)6.2(0 Lct ≤≤   

   The laplacian operator 2∇ is defined as 

   )7.2(2

2
2

x∂
∂

=∇  

    and ( )ctx −δ  is the Dirac delta function defined as 
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    In mechanics, the Dirac delta function may be thought of as a unit concentrated force acting at a point 0=x        Gbadeyan and Oni 
[4]. 

The uniform Rayleigh beam under consideration is assumed to be uniform, which implies, the beams parameters such as young’s 
modulus (E), the moment of inertia (I) and the mass per unit length µ  of the beam do not vary throughout the span (L) of the beam. 
Using equation (1.2) and (2.2) to (2.7) in equation (2.1) and after some simplification and rearrangement one obtains: 
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3.  SOLUTION PROCEDURES

 Equation (2.11) is a fourth order partial differential equation with singular and variable coefficients. In this section, a general 
approach is developed in order to solve the initial value problem. The approach involves expressing the Dirac delta function as a 
Fourier cosine series and then reducing the fourth order partial differential equation (2.11) using the generalized finite integral 
transform (GFIT). The resulting transformed differential equation is then simplified using the modified struble’s asymptotic 
technique.  

The generalized finite integral transform is defined by 
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and )(xVm is any function chosen such that the pertinent boundary conditions are satisfied.  Thus, the thm normal mode of 
vibration of a uniform beam 
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is chosen as a suitable kernel of the integral transform (3.1) where, mλ is the mode frequency, mA , mB , and mC  are constants 
which are  obtained by substituting (3.4) into the appropriate boundary conditions.

 
3.1  Operational simplification  

By applying the generalized finite integral transform (3.1) equation (13) can be written as:  
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In order to evaluate the integral (3.8) to (3.13), use is made of the property of the Dirac delta function as an even function to express 
it in Fourier cosine series namely  
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Thus, in view of (3.2), using (3.14) in (3.5), after some simplification and rearrangements one obtains  
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Equation (3.15) is the transformed equation governing the problem of uniform Rayleigh beam resting on Pasternak foundation. In 
what follows, the special cases of equation (3.15) are considered. 

3.2 Closed form solution  

Case (1):  The moving force problem 

The differential equation describing the dynamic response of uniform Rayleigh beam under the action of concentrated moving force 
moving at constant velocities may be obtained from equation (3.15) by setting 00 =α . It is an approximate model, which assumes 
that the inertia effect of the moving mass negligible and only the force effect of the moving load is taken into consideration, thus in 
this case one obtains: 
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 Equation (3.17) is coupled in ),(),( tkUandtmU  and cannot be solved exact analytically, though it yields readily to numerical 
technique, an approximate analytical method is desirable as solutions obtained often shed light on vital information about the vibrating 
system. 

By the use of a modification of the asymptotic method due to struble’s equation (3.17) can be re-arranged to take the form 
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By this technique, one seeks the modified frequency corresponding to the frequency of the free system due to the presence of 
moving force. An equivalent free system operator defined by modified frequency then replaces equation (3.18). Thus, we set the 
right-hand side of (3.18) to zero and consider a parameter  1<λ  for any arbitrary ratio defined as  
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Substituting equation (3.21) into the homogeneous part of equation (3.18) one obtains 
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when 0λ  is set to zero in equation (3.22) the solution can then be written as  
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where DandC  are constants. 

Furthermore as 1<λ  struble’s technique requires that the asymptotic solution of the homogeneous part of equation (31) be of the 
form  
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To obtain the modified frequency, equation (3.24) and its derivatives are substituted into equation (3.22) and neglecting terms 
which do not contribute to variational equations, one obtains 
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Retaining terms to )(λO  only. 

The variational equations are obtained by equating the coefficient of [ ]),(sin tmtWmf β−  
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and [ ]),(cos tmtWmf β−  on both sides of equation (3.27) 

Thus 
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Solving equation (3.28) and (3.29) respectively gives  
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By substituting (3.30) into (3.34), the first approximation to the homogeneous system is  
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represents the modified natural frequency due to the presence of the moving force. 

Thus, to solve the non-homogeneous equation (3.18), the differential operator which acts on ),(),( tkUandtmU is replaced by 

the equivalent free system operator defined by the homogeneous frequency mfη , thus using (3.32) the homogeneous part of 
equation (3.18) can be written as: 
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The general solution of (3.34) is thus given by: 
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By taking the inversion of (3.35) one obtains 
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Equation (3.36) represents the transverse displacement response to forces moving with constant velocities of uniform Rayleigh 
beam resting on Pasternak foundation. 

Case (II): The Moving Mass Problem 

If the mass of the moving load is commensurable with that of the structure, the inertia effect of the moving load is not negligible. 
Thus, in this case 00 ≠λ , and the solution of the entire equation (3.15) is required. 
This is termed the moving mass problem. Evidently, a closed form solution of equation (3.15) is not possible. Thus the modified 
struble’s asymptotic method is employed to get an approximate analytical solution. We neglected the terms representing the inertia 
effect of the moving mass in equation (3.15) and obtained (3.17). The homogeneous part of this equation can be replaceD by a free 
system operator defineD by the modified frequency mfγ

 
due to the presence of moving mass. 
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As in the previous case, an exact analytical solution to the above equation is not possible. The same technique used in case (1) is 
employed to obtain the modified frequency due to the presence of the moving mass namely  
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 Thus, equation (3.38) takes the form 
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This is analogous to equation (3.34). Thus, using similar argument as in case (1) ),( tmz can be obtained which on inversion yields. 
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Equation (3.43) represents the transverse displacement response to concentrated masses, moving with constant velocities of uniform 
Rayleigh beam resting on Pasternak foundation. 

4. AN IILUSTRATIVE EXAMPLE 
 
For illustration of results in the foregoing analysis, we provide an example on simply supported uniform Rayleigh beam. In this 
case, the uniform Rayleigh beam has simple supports at ends X = 0 and X = L. The displacement and the bending moment vanish. 
Thus 
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 Applying (3.2) and (3.3), one obtains  

0,0,0 ====== kmkmkm CCBBAA                                      (4.4) 
And the frequency equation becomes  
SinגRmR=sinגRk R                                                                                                                                                                             (4.5)                               

πλπλ kandm km ==      (4.6) 

Thus, the moving force problem is reduced to a non-homogeneous second order ordinary differential equation. 
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which represents the transverse displacement response to force moving with constant velocities of simply supported uniform 
Rayleigh beam resting on Pasternak foundation?  
Following arguments similar to those in the last sections, use is made of the modified asymptotic method due to struble to obtain the 
modified frequency due to the presence of moving mass for the simply supported uniform Rayleigh beam given as:  
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Neglecting higher order terms of 0α .thus, the simply supported moving mass problem reduces to  
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which when solved in conjunction with the initial conditions given expression for ),( tmU  and on inversion gives  
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which represent the transverse displacement response to a concentrated mass moving with constant velocities of simply supported 
uniform Rayleigh beam resting on Pasternak foundation. 
 
5.  DISCUSSION OF CLOSED FORM SOLUTION 
 
The response amplitude of dynamical systems such as this may grow without bond. Condition under which this happens is termed 
resonance conditions. It is pertinent at this junction to establish conditions under which resonance occurs. This phenomenon in 
structural and highway engineering is of great concern to researchers or in particular, design engineers, because, for example, it 
causes cracks, permanent deformation and destruction in structures. Bridges and other structures are known to have collapsed as a 
result of resonance occurring between the structure and some signals traversing them. Evidently a simply supported uniform 
Rayleigh beam resting on a Pasternak foundation and traversed by a moving force will experience resonance when 
                            ffβ                                               )1.5(  
 
while the same system traversed by a moving mass reaches the state of resonance whenever 
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Equation (5.1) and (5.3) show that for the same natural frequency, the critical speed for the same system consisting uniform 
Rayleigh beam resting on Pasternak foundation and traversed by a moving mass is smaller than that traversed by a moving force.  
 
6.  NUMERICAL CALCULATION AND DISCUSSIONS OF RESULTS. 
 
We now illustrate the analysis in this work by considering a uniform Rayleigh beam of modulus of elasticity E= 2.10924 1010 
N/m2, the moment of inertia I= 2.87698 10 -3 m4, the beam spam length L= 12.192 and the mass per unit length of the beam = 
4501.563kg/m. The value of the foundation modulus is varied between 0n/m3 and 4000000n/m3, the values of Rotatory inertia  is 
varied between 0m and 4.5m, the values of the shear modulus varied between 0N/m3 and 9000000N/m3 the results are as shown on 
the various graphs as follows: 
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Fig 1: Transverse displacement of a simply supported Rayleigh beam under the actions of the concentrated forces travelling at 
constant velocity for various values of Rotatory inertia   Ro   and for  fixed values  of foundation modulus 0K = 40000 and shear 

modulus 0G = 90000. 

 

 
 
Fig 2:   Deflection profile of a simply supported Rayleigh  beam under the actions of concentrated forces  travelling at constant 
velocity for various value of foundation modulus Ko and fixed values of   Rotatory inertia  Ro = 2.5 and shear modulus 0G = 90000 
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Fig3: Response amplitude of a simply supported Rayleigh beam under the actions of concentrated forces  travelling at constant 
velocity for various values of shear modulus 0G  and for fixed values of Rotatory   inertia    Ro     = 2.5 and foundation modulus K0= 
400000. 

 

 
 
Fig 4: Deflection profile of a simply supported Rayleigh beam under the actions of concentrated masses  travelling at constant 
velocity for various values of Rotatory inertia and for fixed value of  foundation modulus 0K = 400000 and shear modulus 0G = 
90000. 
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Fig 5: Response amplitude of a simply supported Rayleigh beam under the action of concentrated mass  travelling at constant 
velocity for various values of Foundation Modulus  K0 and for fixed values of  Shear Modulus 0G = 40,000 and Rotatory inertia      
Ro  = 2.5. 

 

 

 

 

 
Fig 6:  Response amplitude of a simply supported Rayleigh beam under the action of concentrated mass  travelling at constant 
velocity for various values of Shear Modulus 0G  and for fixed values of  Foundation Modulus 0K = 40,000 and Rotatory inertia  
Ro =2.5. 
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Fig 7: Comparism of the displacement response of moving force and moving mass of uniform simply supported Rayleigh beam for 
fixed values of Rotatory inertia   RO = 2.5, 0K = 400000 and 0G =90000. 

From the graphs above, figures (1) and (4) displays the effect of Rotatory inertia     on the transverse deflection of the simply 
supported uniform Rayleigh beam in both cases of moving force and moving mass problems respectively. The graphs show that 
the response amplitude increases as the value of the Rotatory inertia decreases. 

Figures (2) and (5) displays the effect of foundation modulus ( 0K ) on the transverse deflection of simply supported uniform 
Rayleigh beam in both cases of moving force and moving mass respectively. The graph shows that an increase in the Rotatory 
inertia resulted to decrease in the amplitude of vibration  

Figures (3) and (6) shows the influence of shear modulus ( 0G ) on the deflection profile of simply supported uniform Rayleigh 
beam in both cases of moving force and moving mass problems respectively. The graphs show that higher values of shear modulus 
decrease the vibration of the beam. 

Figure (7) compares the displacement response of moving force and moving mass  and from the graph, the response amplitude of 
moving mass problem is higher than that of the moving force problem of simply supported uniform Rayleigh beam for a fixed 
values of Rotatory inertia     shear modulus ( 0G ) and foundation modulus ( 0K ) 
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Table 1: Results for various values of rotatory inertia RO, with fixed values of shear modulus GO = 900,000 and foundation modulus 
KO = 400,000 for both cases of moving force and moving mass 

MOVING FORCE MOVING MASS 

T(sec) R0 = 0 R0 = 0.5 R0 = 1.5 R0=2.5 R0 = 0 R0 = 0.5 R0 = 2.5 R0 = 4.5 

0 0 0 0 0 0 0 0 0 

0.1 6.97E-04 6.94E-04 6.87E-04 6.80E-04 -3.54E-06 -3.47E-06 -3.21E-06 -2.96E-06 

0.2 1.53E-03 1.49E-03 1.43E-03 1.37E-03 -4.89E-06 -4.24E-06 -2.23E-06 -9.86E-07 

0.3 1.87E-03 1.77E-03 1.57E-03 1.38E-03 1.88E-05 1.70E-05 9.54E-06 3.08E-06 

0.4 2.38E-03 2.15E-03 1.73E-03 1.38E-03 2.48E-05 1.57E-05 -6.91E-06 -1.38E-05 

0.5 2.45E-03 2.03E-03 1.36E-03 8.46E-04 -1.68E-05 -2.59E-05 -3.16E-05 -1.97E-05 

0.6 2.42E-03 1.80E-03 8.77E-04 2.88E-04 -9.40E-05 -9.06E-05 -5.20E-05 -1.91E-05 

0.7 2.32E-03 1.49E-03 4.12E-04 -1.18E-04 -2.18E-04 -1.82E-04 -5.95E-05 -1.02E-05 

0.8 1.66E-03 6.49E-04 -4.19E-04 -7.44E-04 -3.55E-04 -2.57E-04 -5.14E-05 -2.09E-05 

0.9 1.16E-03 4.42E-05 -8.24E-04 -8.36E-04 -4.66E-04 -3.03E-04 -6.39E-05 -3.64E-05 

1.0 2.96E-04 -8.07E-04 -1.29E-03 -9.65E-04 -5.75E-04 -3.47E-04 -7.23E-05 -4.28E-05 

1.1 -3.61E-04 -1.32E-03 -1.28E-03 -6.95E-04 -6.74E-04 -3.70E-04 -7.09E-05 -5.12E-05 

1.2 -9.20E-04 -1.60E-03 -9.77E-04 -2.92E-04 -7.58E-04 -3.74E-04 -5.83E-05 -5.41E-05 

1.3 -1.73E-03 -2.00E-03 -8.68E-04 -2.60E-04 -8.40E-04 -3.46E-04 -3.76E-05 -5.22E-05 

1.4 -2.11E-03 -1.89E-03 -3.92E-04 -4.13E-06 -8.72E-04 -2.46E-04 -3.68E-05 -1.87E-05 

1.5 -2.58E-03 -1.81E-03 -1.95E-04 -8.87E-05 -8.35E-04 -1.08E-04 -2.16E-05 1.07E-05 

1.6 -2.51E-03 -1.23E-03 2.51E-04 1.15E-04 -7.50E-04 3.94E-05 9.53E-06 2.96E-05 

1.7 -2.23E-03 -5.26E-04 5.79E-04 3.16E-04 -6.14E-04 1.79E-04 4.94E-05 3.55E-05 

1.8 -2.04E-03 -6.19E-05 4.98E-04 2.49E-04 -4.65E-04 2.72E-04 8.40E-05 4.40E-05 

1.9 -1.41E-03 6.51E-04 5.99E-04 4.70E-04 -3.26E-04 3.43E-04 8.45E-05 5.13E-05 

2.0 -9.36E-04 9.78E-04 3.52E-04 3.72E-04 -1.60E-04 4.07E-04 8.46E-05 3.96E-05 

2.1 -3.64E-05 1.51E-03 4.47E-04 5.57E-04 3.47E-05 4.38E-04 7.96E-05 3.48E-05 

2.2 7.76E-04 1.76E-03 4.54E-04 5.33E-04 2.65E-04 4.43E-04 6.69E-05 3.05E-05 

2.3 1.32E-03 1.60E-03 2.63E-04 1.86E-04 5.39E-04 3.99E-04 4.48E-05 3.19E-05 

2.4 2.00E-03 1.49E-03 3.24E-04 2.39E-05 8.02E-04 3.06E-04 7.10E-06 1.26E-05 

2.5 2.19E-03 9.23E-04 4.86E-05 -4.47E-04 1.03E-03 2.15E-04 -1.57E-06 -1.01E-06 

2.6 2.54E-03 6.15E-04 1.03E-04 -4.63E-04 1.24E-03 1.29E-04 7.04E-06 8.76E-07 

2.7 2.51E-03 1.06E-04 -4.72E-05 -5.00E-04 1.39E-03 5.37E-05 2.06E-05 7.71E-06 

2.8 2.17E-03 -4.70E-04 -3.19E-04 -4.89E-04 1.52E-03 -6.27E-06 2.58E-05 1.04E-05 

2.9 1.87E-03 -7.42E-04 -3.65E-04 -1.58E-04 1.61E-03 -8.71E-05 1.13E-05 2.43E-06 

3.0 1.06E-03 -1.23E-03 -7.12E-04 -1.61E-04 1.62E-03 -1.63E-04 1.19E-05 8.46E-06 

3.1 5.03E-04 -1.22E-03 -6.24E-04 1.22E-04 1.54E-03 -2.08E-04 7.49E-06 1.36E-06 

3.2 -3.05E-04 -1.27E-03 -6.37E-04 8.04E-05 1.37E-03 -2.24E-04 -6.12E-06 -9.43E-06 

3.3 -1.05E-03 -1.14E-03 -4.94E-04 -2.36E-05 1.09E-03 -1.94E-04 -2.69E-05 -2.18E-05 

3.4 -1.52E-03 -7.19E-04 -7.80E-05 1.40E-05 7.68E-04 -1.55E-04 -4.91E-05 -1.30E-05 

3.5 -2.21E-03 -5.87E-04 1.75E-05 -2.67E-04 4.08E-04 -1.41E-04 -3.83E-05 -1.89E-07 

3.6 -2.38E-03 -1.03E-04 4.22E-04 -9.75E-05 1.95E-06 -1.32E-04 -2.69E-05 -5.96E-06 

3.7 -2.59E-03 1.21E-04 5.04E-04 -2.25E-05 -4.30E-04 -1.35E-04 -2.55E-05 -1.49E-05 

3.8 -2.41E-03 4.55E-04 6.33E-04 3.30E-04 -8.98E-04 -1.36E-04 -3.85E-05 -2.85E-05 

3.9 -1.89E-03 8.30E-04 7.49E-04 8.15E-04 -1.38E-03 -1.20E-04 -6.11E-05 -3.44E-05 
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4.0 -1.57E-03 7.46E-04 3.84E-04 8.17E-04 -1.79E-03 -1.28E-04 -6.31E-05 -5.52E-05 
  

Table 2: Results for various values of foundation modulus KO, with fixed values of shear modulus GO =900,000 and rotatory inertia 
RO for both cases of moving force and moving mass 

MOVING FORCE MOVING MASS 

T(sec) K = 0 K = 40000 K = 400000 K = 4000000 K = 0 K = 40000 K = 400000 K = 4000000 

0 0 0 0 0 0 0 0 0 

0.1 -6.80E-04 -6.77E-04 -6.50E-04 -4.29E-04 -3.53E-06 -3.51E-06 -3.36E-06 -2.18E-06 

0.2 4.65E-05 5.06E-05 7.53E-05 -1.72E-04 -4.76E-06 -4.65E-06 -3.84E-06 -1.79E-06 

0.3 1.06E-02 1.02E-02 6.88E-03 -3.12E-04 1.86E-05 1.76E-05 1.03E-05 -2.68E-06 

0.4 2.91E-02 2.69E-02 1.28E-02 8.01E-04 2.31E-05 2.00E-05 2.28E-06 6.15E-08 

0.5 5.56E-02 4.95E-02 1.73E-02 1.33E-03 -1.92E-05 -1.94E-05 -9.66E-06 2.24E-06 

0.6 9.39E-02 7.97E-02 1.92E-02 2.29E-03 -9.58E-05 -8.21E-05 -6.97E-06 2.66E-06 

0.7 0.1368906 0.108647 1.63E-02 2.79E-03 -2.17E-04 -1.73E-04 -5.61E-06 4.70E-06 

0.8 0.1833918 0.1342565 1.57E-02 2.66E-03 -3.47E-04 -2.51E-04 -3.19E-06 1.70E-07 

0.9 0.233009 0.154658 1.54E-02 2.31E-03 -4.50E-04 -2.92E-04 -2.94E-05 -1.34E-06 

1.0 0.276621 0.1612865 0.0148814 1.48E-03 -5.53E-04 -3.25E-04 -6.14E-05 -7.05E-06 

1.1 0.3137915 0.1561683 1.47E-02 4.64E-04 -6.44E-04 -3.39E-04 -6.32E-05 -1.01E-05 

1.2 0.3417625 0.1387919 9.04E-03 1.54E-04 -7.22E-04 -3.30E-04 -5.57E-05 -1.11E-05 

1.3 0.3517773 0.1058931 3.38E-03 -6.65E-04 -7.92E-04 -3.00E-04 -3.55E-05 -1.01E-05 

1.4 0.3450527 6.49E-02 -9.42E-04 -1.75E-05 -8.05E-04 -2.07E-04 -2.13E-05 -5.86E-06 

1.5 0.31788 1.71E-02 -3.67E-03 -2.23E-04 -7.49E-04 -6.82E-05 -7.65E-06 7.73E-07 

1.6 0.2649225 -3.56E-02 -1.29E-03 4.26E-04 -6.46E-04 7.54E-05 2.78E-05 4.47E-06 

1.7 0.1915606 -8.35E-02 -1.34E-03 3.78E-04 -4.96E-04 2.11E-04 4.73E-05 1.15E-05 

1.8 9.70E-02 -0.1259384 -4.13E-03 -3.38E-05 -3.41E-04 2.96E-04 5.35E-05 9.79E-06 

1.9 -0.0164091 -0.158944 -9.14E-03 -4.51E-04 -1.95E-04 3.36E-04 5.18E-05 1.12E-05 

2.0 -0.1374477 -0.1752707 -1.73E-02 -1.61E-03 -2.07E-05 3.66E-04 4.29E-05 5.85E-06 

2.1 -0.2627826 -0.1785965 -0.0203756 -2.19E-03 1.78E-04 3.70E-04 4.66E-05 2.44E-06 

2.2 -0.3839211 -0.1671378 -2.02E-02 -2.73E-03 4.06E-04 3.53E-04 2.84E-05 -1.38E-06 

2.3 -0.4882285 -0.1407805 -1.77E-02 -2.83E-03 6.62E-04 3.12E-04 -9.15E-07 -3.51E-06 

2.4 -0.5732464 -0.1086789 -1.30E-02 -2.12E-03 8.88E-04 2.20E-04 -1.06E-05 -3.86E-06 

2.5 -0.6304917 -7.17E-02 -1.26E-02 -1.57E-03 1.08E-03 1.22E-04 -8.55E-06 -1.04E-06 

2.6 -0.6525543 -3.48E-02 -1.18E-02 -5.39E-04 1.23E-03 4.32E-05 1.14E-05 -1.13E-06 

2.7 -0.641828 -6.50E-03 -9.85E-03 1.45E-04 1.33E-03 -1.88E-05 1.27E-05 3.66E-06 

2.8 -0.5934159 0.0156402 -7.27E-03 1.99E-04 1.41E-03 -4.46E-05 -4.65E-06 9.58E-07 

2.9 -0.5074162 2.87E-02 -6.26E-04 5.75E-04 1.44E-03 -6.77E-05 -4.67E-06 2.87E-06 

3.0 -0.3912755 3.15E-02 3.07E-03 -3.07E-04 1.38E-03 -1.06E-04 -3.88E-06 -6.30E-07 

3.1 -0.2448461 3.21E-02 4.40E-03 -3.78E-05 1.23E-03 -1.25E-04 2.84E-06 -1.64E-06 

3.2 -7.64E-02 0.0298781 4.89E-03 -5.68E-04 9.96E-04 -1.29E-04 1.90E-06 -2.33E-06 

3.3 0.1020834 2.83E-02 3.55E-03 1.24E-05 6.82E-04 -1.07E-04 -7.71E-06 -2.12E-06 

3.4 0.2854898 0.0344556 7.59E-03 6.24E-04 3.46E-04 -5.79E-05 4.96E-06 -4.26E-07 

3.5 0.4593943 4.44E-02 1.36E-02 1.39E-03 -1.53E-05 -3.72E-05 8.37E-06 2.72E-06 

3.6 0.6109798 5.99E-02 0.018969 2.35E-03 -4.07E-04 -4.98E-05 -1.17E-06 2.34E-06 

3.7 0.7348408 8.18E-02 2.31E-02 2.71E-03 -8.09E-04 -8.45E-05 -1.41E-05 4.87E-06 

3.8 0.8177841 0.1019367 2.00E-02 2.68E-03 -1.23E-03 -1.43E-04 -3.10E-05 1.14E-07 
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3.9 0.8543453 0.1209015 1.53E-02 2.40E-03 -1.62E-03 -1.81E-04 -2.63E-05 -1.51E-06 

4.0 0.84542 0.135534 0.0111612 1.24E-03 -1.92E-03 -2.01E-04 -3.32E-05 -6.88E-06 
 

Table 3: Results for various values of shear modulus GO, with fixed values of foundation modulus KO = 400,000 and rotatory inertia 
RO = 2.5 for both cases of moving force and moving mass 

MOVING FORCE MOVING MASS 

T(sec) G = 0 G = 90000 G = 900000 G = 9000000 G = 0 G = 90000 G = 900000 G = 9000000 

0 0 0 0 0 0 0 0 0 

0.1 -6.84E-04 -6.77E-04 -6.16E-04 -1.66E-04 -3.52E-06 -3.50E-06 -3.24E-06 -1.46E-06 

0.2 -4.21E-05 5.06E-05 7.70E-04 2.35E-03 -4.79E-06 -4.49E-06 -2.33E-06 -1.70E-06 

0.3 1.01E-02 1.02E-02 0.0103067 6.14E-03 1.79E-05 1.73E-05 1.11E-05 -9.38E-06 

0.4 2.72E-02 2.69E-02 2.39E-02 8.95E-03 2.16E-05 1.80E-05 -5.72E-06 -9.65E-06 

0.5 5.03E-02 4.95E-02 4.29E-02 9.59E-03 -1.74E-05 -2.17E-05 -4.12E-05 -7.80E-06 

0.6 8.16E-02 7.97E-02 6.33E-02 8.92E-03 -8.09E-05 -8.34E-05 -8.24E-05 -6.63E-06 

0.7 0.1127152 0.108647 7.83E-02 9.80E-03 -1.74E-04 -1.70E-04 -1.17E-04 -8.47E-06 

0.8 0.1406675 0.1342565 8.83E-02 1.20E-02 -2.58E-04 -2.42E-04 -1.27E-04 -1.60E-05 

0.9 0.1645566 0.154658 8.66E-02 1.22E-02 -3.03E-04 -2.78E-04 -1.45E-04 -1.96E-05 

1.0 0.1753645 0.1612865 7.53E-02 9.77E-03 -3.39E-04 -3.09E-04 -1.57E-04 -2.29E-05 

1.1 0.1737616 0.1561683 5.69E-02 6.08E-03 -3.54E-04 -3.21E-04 -1.48E-04 -1.97E-05 

1.2 0.1601246 0.1387919 3.20E-02 3.54E-03 -3.46E-04 -3.11E-04 -1.14E-04 -1.85E-05 

1.3 0.1295818 0.1058931 9.28E-03 3.56E-03 -3.19E-04 -2.77E-04 -4.74E-05 -1.94E-05 

1.4 0.0882535 6.49E-02 -1.12E-02 3.49E-03 -2.31E-04 -1.78E-04 3.72E-06 -1.01E-05 

1.5 3.86E-02 1.71E-02 -2.54E-02 9.10E-04 -9.19E-05 -4.21E-05 4.06E-05 -1.75E-06 

1.6 -0.0195209 -3.56E-02 -3.12E-02 -2.63E-03 5.69E-05 9.42E-05 6.91E-05 1.12E-05 

1.7 -7.61E-02 -8.35E-02 -3.39E-02 -5.08E-03 2.03E-04 2.17E-04 8.91E-05 2.01E-05 

1.8 -0.1281869 -0.1259384 -3.15E-02 -5.66E-03 3.02E-04 2.86E-04 1.14E-04 1.95E-05 

1.9 -0.1733085 -0.158944 -3.03E-02 -5.60E-03 3.49E-04 3.18E-04 1.06E-04 2.06E-05 

2.0 -0.2017483 -0.1752707 -3.23E-02 -7.71E-03 3.84E-04 3.43E-04 8.18E-05 1.95E-05 

2.1 -0.2143949 -0.1785965 -3.64E-02 -1.13E-02 3.95E-04 3.40E-04 6.29E-05 2.04E-05 

2.2 -0.2108349 -0.1671378 -4.65E-02 -1.30E-02 3.84E-04 3.16E-04 5.69E-05 1.62E-05 

2.3 -0.187454 -0.1407805 -5.62E-02 -1.18E-02 3.53E-04 2.62E-04 7.90E-05 1.02E-05 

2.4 -0.1524134 -0.1086789 -6.55E-02 -9.22E-03 2.70E-04 1.66E-04 8.70E-05 7.08E-06 

2.5 -0.1092716 -7.17E-02 -7.13E-02 -7.39E-03 1.65E-04 8.00E-05 8.41E-05 4.66E-06 

2.6 -6.03E-02 -3.48E-02 -6.82E-02 -7.56E-03 7.43E-05 1.74E-05 8.04E-05 1.06E-05 

2.7 -1.64E-02 -6.50E-03 -5.96E-02 -7.17E-03 -5.07E-06 -2.38E-05 7.23E-05 8.89E-06 

2.8 2.08E-02 0.0156402 -4.20E-02 -4.15E-03 -4.78E-05 -3.39E-05 7.12E-05 3.97E-06 

2.9 0.0503431 2.87E-02 -1.92E-02 -5.17E-04 -7.67E-05 -5.35E-05 3.97E-05 1.81E-06 

3.0 6.61E-02 3.15E-02 4.51E-03 1.64E-03 -1.22E-04 -8.26E-05 -9.22E-06 -3.05E-06 

3.1 7.37E-02 3.21E-02 2.91E-02 1.85E-03 -1.53E-04 -8.89E-05 -5.05E-05 -6.81E-07 

3.2 0.0751733 0.0298781 4.69E-02 1.67E-03 -1.68E-04 -8.25E-05 -7.71E-05 -2.38E-06 

3.3 6.96E-02 2.83E-02 5.92E-02 4.05E-03 -1.59E-04 -5.10E-05 -7.14E-05 -6.83E-06 

3.4 6.56E-02 0.0344556 6.44E-02 8.25E-03 -1.09E-04 -1.27E-05 -7.23E-05 -9.55E-06 

3.5 6.35E-02 4.44E-02 6.14E-02 1.08E-02 -7.09E-05 -1.76E-05 -7.70E-05 -1.02E-05 

3.6 6.26E-02 5.99E-02 5.64E-02 1.09E-02 -6.51E-05 -5.00E-05 -7.26E-05 -6.33E-06 

3.7 0.0688315 8.18E-02 4.78E-02 9.92E-03 -8.15E-05 -1.02E-04 -6.67E-05 -9.39E-06 
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3.8 7.81E-02 0.1019367 4.11E-02 9.71E-03 -1.29E-04 -1.63E-04 -5.03E-05 -1.30E-05 

3.9 8.82E-02 0.1209015 3.81E-02 1.10E-02 -1.69E-04 -1.97E-04 -6.24E-05 -2.00E-05 

4.0 0.1017883 0.135534 3.65E-02 1.10E-02 -1.82E-04 -2.27E-04 -9.39E-05 -2.48E-05 
 

Table 4: Result comparism of the displacement response of moving force and moving mass of uniform simply supported Rayleigh 
beam for fixed values of Rotatory inertia   = 2.5, 0K  = 400000   and 0G  =90000. 

T(sec) MOVING FORCE MOVING MASS 

0 0 0 

0.1 -5.35E-06 -6.50E-04 

0.2 5.71E-06 7.53E-05 

0.3 5.00E-05 6.88E-03 

0.4 1.41E-06 1.28E-02 

0.5 -9.83E-06 1.73E-02 

0.6 -6.77E-06 1.92E-02 

0.7 -5.00E-06 1.63E-02 

0.8 -3.10E-06 1.57E-02 

0.9 -3.05E-05 1.54E-02 

1.0 -6.06E-05 0.014881 

1.1 -6.15E-05 1.47E-02 

1.2 -5.44E-05 9.04E-03 

1.3 -3.50E-05 3.38E-03 

1.4 -2.27E-05 -9.42E-04 

1.5 -6.95E-06 -3.67E-03 

1.6 2.89E-05 -1.29E-03 

1.7 4.59E-05 -1.34E-03 

1.8 5.21E-05 -4.13E-03 

1.9 5.01E-05 -9.14E-03 

2.0 4.42E-05 -1.73E-02 

2.1 4.79E-05 -0.02038 

2.2 2.54E-05 -2.02E-02 

2.3 -2.16E-06 -1.77E-02 

2.4 -1.01E-05 -1.30E-02 

2.5 -5.74E-06 -1.26E-02 

2.6 1.35E-05 -1.18E-02 

2.7 8.94E-06 -9.85E-03 

2.8 -5.58E-06 -7.27E-03 

2.9 -2.94E-06 -6.26E-04 

3.0 -2.55E-06 3.07E-03 

3.1 3.50E-06 4.40E-03 

3.2 -1.90E-06 4.89E-03 

3.3 -7.09E-06 3.55E-03 

3.4 8.12E-06 7.59E-03 

3.5 6.81E-06 1.36E-02 

3.6 -2.96E-06 0.018969 

3.7 -1.69E-05 2.31E-02 
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3.8 -2.79E-05 2.00E-02 

3.9 -2.09E-05 1.53E-02 

4.0 2.61E-05 0.011161 
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7. CONCLUSION 

   The problem of vibrations of uniform Rayleigh beam resting on elastic Pasternak foundation and transverse by concentrated 
masses travelling at constant velocity has been investigated. Illustrative example involving simply supported is presented. The 
solutions hitherto obtained are analyzed and resonance      conditions for the various problems are established. Results show that: 
    Resonance is reached earlier in a system traversed by moving mass then in that under the action of a moving force. 
 

1. As the shear modulus (G), Rotatory inertia  and foundation modulus (K) increases, the amplitude of uniform Rayleigh 
beam under the action of moving loads moving at constant velocity decreases. 

 

2. When the values of the shear modulus (G) and Rotatory inertia  are fixed, the displacement of uniform Rayleigh 
beam resting on elastic Pasternak foundation and traversed by masses travelling with constant velocity. 

3. For fixed value of axial force, shear modulus and foundation modulus, the response amplitude for the moving mass 
problem is greater than that of the moving force problem for the illustrated end condition considered. 

 

4. It has been established that, the moving force solution is not an upper bound for accurate solution of the moving mass in 
uniform Rayleigh beams under accelerating loads. Hence, the non- reliability of moving force solution as a 
safe approximation to the moving mass problem is confirmed. 

 
5. In the illustrated examples, for the same natural frequency, the critical velocity for moving mass problem is smaller than 

that of the moving force problem. Hence, resonance is reach earlier in the moving mass problem. 

 
 
 
 
 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014                                                                                                      1630 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

 

References 

  [1] Aiyesimi Y.M (1990): Dynamic response of elastic structures continuously supported visco-effect   foundation and traversed by 
moving loads. M.sc thesis university of Ilorin. 

[2] Fryba, L (1972): vibrations of solids and structures under moving loads Groningen: Noordhoff, 

  [3] Gbadeyan J.A and Oni, S.T (1992): dynamic response to moving concentrated masses of elastic plates    on a non-Winkler 
elastic foundation. Journal of sound and vibration vol 54, pp 343-358. 

[4]Gbadeyan, J.A and Oni S.T (1995): Dynamic behavior of beams and rectangular plates under moving loads. Journal of sound and 
vibration 182(5), pp 677-695. 

[5] Kenny .J (1954): Steady state vibrations of a beam on an elastic foundation for a moving load. Journal of Applied Mechanics 
(ASME) Vol. 76. 

 [6] Milormir M; Stanisic, M.M; Hardin J.C (1969): On the response of beam to an arbitrary number of  concentrated moving 
masses. Journal of the Franklin institute, vol 287 No 2. 

[7] Mindhin R.D (1951): influence of rotary inertia and shear modulus on flexural motions of isotropic elastic plates. Journal of 
Applied Mechanics pp 31- 38. 

 [8] Odman, S. T (1968): Differential Equation for calculation of vibrations produced in load- bearing structures by moving loads, 
preliminary publication. International Association for bridges and structural Engineering, 3rd congress, Liege, pp 669- 680 

  [9] Oni S.T and T.O Awodola (2003): vibrations under a moving of a non-uniform Rayleigh beam on   variable elastic foundation Vol 
7, pp 191-206, Journal of the    Nigerian association of Mathematical Physics. 

[10] Pasternak, P.I. (1954): On a new method of an elastic foundation by means of two foundation constants (in Russian). 
Gosudarstennue izdatelstve literaturi Postoitelstrui Arkhitekture, Moscow. 

[11] Stanisic, M.M; Hardin, J.C (1968): On the response of plate to a moving multi-masses moving  system. Acta mechanical 5, 37-
53. 

[12] Timoshenko, S (1952): On the transverse vibrations of bars of uniform cross section. Philosophy mag.   Ser. 6, vol.43, pp.125 – 
131. 

[13] Willis, R. (1951): Preliminary essay to the appendix B, Experiments for determining the effects   produced by causing weights 
to travel over bars with different velocities. Barlow, P., Treatie on  the strength of timber, cast iron and malleable iron. London 

  [14] Winkler, E (1982): Die Lahre vonder Elastizitiit and festigkeit Prague. 

IJSER

http://www.ijser.org/



